

Product datasheet

info@arigobio.com

ARG63704 anti-ERK2 antibody

Package: 100 μg Store at: -20°C

Summary

Product Description Goat Polyclonal antibody recognizes ERK2

Tested Reactivity Hu

Predict Reactivity Ms, Rat, Cow, Dog

Tested Application ICC/IF, WB

Specificity This antibody is expected to recognise an epitope corresponding to aa 9-19 of both reported protein

isoforms of human ERK2 / MAPK1 protein.

Host Goat

Clonality Polyclonal

Isotype IgG

Target Name ERK2

Species Human

Immunogen CAAGPEMVRGQVF

Conjugation Un-conjugated

Alternate Names MAPK 2; MAPK 1; MAP kinase 2; ERK-2; p41; ERK; MAP kinase 1; PRKM2; PRKM1; EC 2.7.11.24; MAPK2;

p40; Extracellular signal-regulated kinase 2; p38; Mitogen-activated protein kinase 2; Mitogen-activated

protein kinase 1; ERK2; MAP kinase isoform p42; p42-MAPK; P42MAPK; p41mapk; ERT1

Application Instructions

Application table	Application	Dilution
	ICC/IF	10 μg/ml
	WB	0.5 - 2 μg/ml
P.P. STATE	WB: Recommend incubate at RT for 1h. * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist.	

Properties

Form Liquid

Purification Purified from goat serum by antigen affinity chromatography.

Buffer Tris saline (pH 7.3), 0.02% Sodium azide and 0.5% BSA.

Preservative 0.02% Sodium azide

Stabilizer 0.5% BSA

Concentration 0.5 mg/ml

Storage instruction

For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C or below. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use.

Note

For laboratory research only, not for drug, diagnostic or other use.

Bioinformation

Database links

GenelD: 5594 Human

Swiss-port # P28482 Human

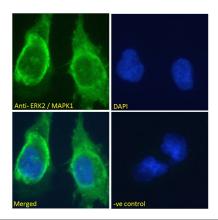
Background

ERK2 is a member of the MAP kinase family. MAP kinases, also known as extracellular signal-regulated kinases (ERKs), act as an integration point for multiple biochemical signals, and are involved in a wide variety of cellular processes such as proliferation, differentiation, transcription regulation and development. The activation of this kinase requires its phosphorylation by upstream kinases. Upon activation, this kinase translocates to the nucleus of the stimulated cells, where it phosphorylates nuclear targets. One study also suggests that this protein acts as a transcriptional repressor independent of its kinase activity. The encoded protein has been identified as a moonlighting protein based on its ability to perform mechanistically distinct functions. Two alternatively spliced transcript variants encoding the same protein, but differing in the UTRs, have been reported for this gene. [provided by RefSeq, Jan 2014]

Function

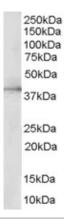
Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK1/ERK2 and MAPK3/ERK1 are the 2 MAPKs which play an important role in the MAPK/ERK cascade. They participate also in a signaling cascade initiated by activated KIT and KITLG/SCF. Depending on the cellular context, the MAPK/ERK cascade mediates diverse biological functions such as cell growth, adhesion, survival and differentiation through the regulation of transcription, translation, cytoskeletal rearrangements. The MAPK/ERK cascade plays also a role in initiation and regulation of meiosis, mitosis, and postmitotic functions in differentiated cells by phosphorylating a number of transcription factors. About 160 substrates have already been discovered for ERKs. Many of these substrates are localized in the nucleus, and seem to participate in the regulation of transcription upon stimulation. However, other substrates are found in the cytosol as well as in other cellular organelles, and those are responsible for processes such as translation, mitosis and apoptosis. Moreover, the MAPK/ERK cascade is also involved in the regulation of the endosomal dynamics, including lysosome processing and endosome cycling through the perinuclear recycling compartment (PNRC); as well as in the fragmentation of the Golgi apparatus during mitosis. The substrates include transcription factors (such as ATF2, BCL6, ELK1, ERF, FOS, HSF4 or SPZ1), cytoskeletal elements (such as CANX, CTTN, GJA1, MAP2, MAPT, PXN, SORBS3 or STMN1), regulators of apoptosis (such as BAD, BTG2, CASP9, DAPK1, IER3, MCL1 or PPARG), regulators of translation (such as EIF4EBP1) and a variety of other signaling-related molecules (like ARHGEF2, FRS2 or GRB10). Protein kinases (such as RAF1, RPS6KA1/RSK1, RPS6KA3/RSK2, RPS6KA2/RSK3, RPS6KA6/RSK4, SYK, MKNK1/MNK1, MKNK2/MNK2, RPS6KA5/MSK1, RPS6KA4/MSK2, MAPKAPK3 or MAPKAPK5) and phosphatases (such as DUSP1, DUSP4, DUSP6 or DUSP16) are other substrates which enable the propagation the MAPK/ERK signal to additional cytosolic and nuclear targets, thereby extending the specificity of the cascade. [UniProt]

Research Area


Cancer antibody; Cell Biology and Cellular Response antibody; Cell Death antibody; Developmental Biology antibody; Gene Regulation antibody; Metabolism antibody; Neuroscience antibody; Signaling Transduction antibody

Calculated Mw

41 kDa


PTM

Phosphorylated upon KIT and FLT3 signaling (By similarity). Dually phosphorylated on Thr-185 and Tyr-187, which activates the enzyme. Undergoes regulatory phosphorylation on additional residues such as Ser-246 and Ser-248 in the kinase insert domain (KID) These phosphorylations, which are probably mediated by more than one kinase, are important for binding of MAPK1/ERK2 to importin-7 (IPO7) and its nuclear translocation. In addition, autophosphorylation of Thr-190 was shown to affect the subcellular localization of MAPK1/ERK2 as well. Ligand-activated ALK induces tyrosine phosphorylation. Dephosphorylated by PTPRJ at Tyr-187. Phosphorylation on Ser-29 by SGK1 results in its activation by enhancing its interaction with MAP2K1/MEK1 and MAP2K2/MEK2. DUSP3 and DUSP6 dephosphorylate specifically MAPK1/ERK2 and MAPK3/ERK1 whereas DUSP9 dephosphorylates a broader range of MAPKs.

ARG63704 anti-ERK2 antibody ICC/IF image

Immunofluorescence: Paraformaldehyde fixed U251 cells permeabilized with 0.15% Triton. Cells were stained with ARG63704 anti-ERK2 antibody (green) at 10 $\mu g/ml$ dilution for 1 hour. DAPI (blue) for nuclear staining. Negative control: Unimmunized goat IgG (green) at 10 $\mu g/ml$ dilution.

ARG63704 anti-ERK2 / MAPK1 antibody WB image

Western blot: 35 μg of HepG2 cell lysate (in RIPA buffer) stained with ARG63704 anti-ERK2 / MAPK1 antibody at 0.5 $\mu g/ml$ dilution and incubated at RT for 1 hour.