

ARG59873 anti-METTL14 antibody

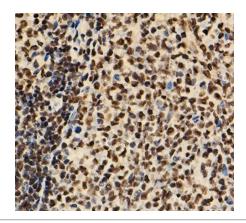
Package: 100 μl Store at: -20°C

Summary

Product Description	Rabbit Polyclonal antibody recognizes METTL14
Tested Reactivity	Hu, Ms, Rat
Tested Application	IHC-P, WB
Host	Rabbit
Clonality	Polyclonal
Isotype	lgG
Target Name	METTL14
Species	Human
Immunogen	Recombinant fusion protein corresponding to aa. 1-210 of Human METTL14 (NP_066012.1).
Conjugation	Un-conjugated
Alternate Names	N6-adenosine-methyltransferase subunit METTL14; EC 2.1.1.62; Methyltransferase-like protein 14

Application Instructions

Application table	Application	Dilution
	IHC-P	1:50 - 1:200
	WB	1:500 - 1:2000
Application Note	* The dilutions indicate recomm should be determined by the sci	nended starting dilutions and the optimal dilutions or concentrations interference in the second starting dilutions and the optimal dilutions or concentrations in the second starting dilution is a second starting dilution of the second starting dilution is a second starting dilution of the second starting dilution is a second starting dilution of the second starting dilution is a second starting dilution of the second starting dilution is a second starting dilution of the second starting dilution is a second starting dilution of the second starting dilution is a second starting dilution of the second starting dilution is a second starting dilution of the second starting dilution is a second starting dilution of the second starting dilution is a second starting dilution of the second starting dilution of the second starting dilution of the second starting dilution is a second starting dilution of the second starti
Positive Control	A549 and Mouse brain	
Observed Size	62 kDa	

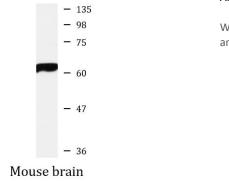

Properties

Form	Liquid
Purification	Affinity purified.
Buffer	PBS (pH 7.3), 0.02% Sodium azide and 50% Glycerol.
Preservative	0.02% Sodium azide
Stabilizer	50% Glycerol
Storage instruction	For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use.
Note	For laboratory research only, not for drug, diagnostic or other use.

Bioinformation

Gene Symbol	METTL14
Gene Full Name	methyltransferase like 14
Function	N6-methyltransferase that methylates adenosine residues of some mRNAs and acts as a regulator of the circadian clock and differentiation of embryonic stem cells. N6-methyladenosine (m6A), which takes place at the 5'-[AG]GAC-3' consensus sites of some mRNAs, plays a role in the efficiency of mRNA splicing, processing and mRNA stability. M6A regulates the length of the circadian clock: acts as a early pace-setter in the circadian loop. M6A also acts as a regulator of mRNA stability: in embryonic stem cells (ESCs), m6A methylation of mRNAs encoding key naive pluripotency-promoting transcripts results in transcript destabilization (By similarity). [UniProt]
Highlight	Related news: m6A reader YTHDF2 in mRNA decay and aggresome formation;
Calculated Mw	52 kDa
РТМ	Phosphorylation at Ser-399 is important for interaction with METTL3: phosphorylated Ser-399 forms a salt bridge with 'Arg-471' of METTL3. [UniProt]
Cellular Localization	Nucleus. [UniProt]

Images


- 135 - 98 - 75 - 60 - 47 - 36 A549

ARG59873 anti-METTL14 antibody IHC-P image

Immunohistochemistry: Paraffin-embedded Rat spleen tissue stained with ARG59873 anti-METTL14 antibody at 1:100 dilution.

ARG59873 anti-METTL14 antibody WB image

Western blot: 25 μg of A549 cell lysate stained with ARG59873 anti-METTL14 antibody at 1:1000 dilution.

ARG59873 anti-METTL14 antibody WB image

Western blot: 25 μg of Mouse brain lysate stained with ARG59873 anti-METTL14 antibody at 1:1000 dilution.